CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the May/June 2015 series

0444 MATHEMATICS (US)

0444/21 Paper 2, maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

BBCAMRRIDGE

www.PapaCambridge.com

Page	2 Mark Scheme	Syl. 73 per
	Cambridge IGCSE – May/June 2015	044
Abbrev	viations	Call
cao	correct answer only	and ridge
dep	dependent	136
FŤ	follow through after error	260
isw	ignore subsequent working	- On
oe	or equivalent	
SC	Special Case	
nfarar	not from wrong working	

Abbreviations

not from wrong working nfww

seen or implied soi

Qu.		Answers	Mark	Part Marks
1		9.5	1	
2		0.0001 oe	1	
3		$2x^2 + 8x - 35$ final answer	2	B1 for 2 correct terms in answer or M1 for $2x^2 + 3x$ or $5x - 35$
4		Paul and correct reason with 28% oe shown or conversion of 26% to fraction and common denominator	2	B1 for $\frac{7}{25}$ seen as decimal or % (0.28) or conversion of 26% to fraction and common denominator
5		$24u^2w^3$ final answer	2	B1 for 2 correct elements in final answer
6		$5\sqrt{3}$	2	B1 for $[\sqrt{12} =] 2\sqrt{3}$ or $[\sqrt{27} =] 3\sqrt{3}$
7		10	3	M2 for $\sqrt{(7-1)^2 + (11-5)^2}$ oe or M1 for $(7-1)$ oe or $(11-5)$ oe
8		$\frac{5}{21}$ cao	3	B1 for $\frac{9}{5}$ or $\frac{5}{9}$ or $\frac{63}{35}$ or $\frac{35}{63}$
				M1 for $\frac{3}{7} \times their \frac{5}{9}$ or $\frac{15}{35} \div \frac{63}{35}$ oe
9	(a)	2	1	
	(b)	8	2	M1 for $4^{\frac{3}{2}}$ or $\left(\frac{1}{2}\right)^{-3}$ or $\left(\frac{1}{64}\right)^{-\frac{1}{2}}$
10	(a)	4 <i>n</i> oe final answer	1	
	(b)	$3n^2 + 8$ oe final answer	2	M1 for a quadratic expression as final answer or $3n^2 + 8$ oe in working

Page 3	Mark Scheme	Syl oer	
	Cambridge IGCSE – May/June 2015	044	

			THE PARTY OF THE P
11	18	3	M2 for $2(2+4)^2 = p(-2+4)^2$ oe
			M2 for $2(2+4)^2 = p(-2+4)^2$ oe M1 for $p = \frac{k}{(q+4)^2}$
			A1 for $k = 72$
12 (a)	5	2	M1 for $18 \times \frac{1000}{60 \times 60}$ oe
(b)	54	1FT	FT 270 ÷ their (a)
13 (a)	2 b	1	
(b)	Parallelogram	1	
	PM equal and parallel to $QRorPM$ or PS parallel to $QRand MR found = a so 2 pairs ofparallel sides$	1	SC1 for answer trapezoid with reason PM parallel to QR
14	<i>y</i> < 8	1	
	$y \ge 6 - x$ oe and $y \ge x + 2$ oe	3	B2 for either $y \ge 6 - x$ oe or $y \ge x + 2$ oe or $y \ge 6 - x$ oe and $y = x + 2$ oe or SC1 for $y > 6 - x$ or $y = 6 - x$ or $y = 6 - x$ or $y > x + 2$ or $y = x + 2$
15	5300	3	B2 for 300 or M2 for $5000 + \frac{5000 \times 2 \times 3}{100}$ oe or M1 for $\frac{5000 \times 2 \times 3}{100}$ oe
16 (a)	2×3×5	2	B1 for 2, 3, 5 as prime factors
(b)	90	2	B1 for $90k$ or $2 \times 3 \times 3 \times 5$ or for listing multiples of each up to 90
17	x = 3	4	M1 for correctly equating one set of coefficients
	y = -1		M1 for correct method to eliminate one variable A1 $x = 3$ A1 $y = -1$
			If zero scored SC1 for 2 values satisfying one of the original equations

Page 4	Mark Scheme	Syl Syl per	
	Cambridge IGCSE – May/June 2015	044	

				50
18	(a)	7.5 oe	2	M1 for $[10] \times \frac{6}{8}$ oe
	(b)	18	2	M1 for $\left(\frac{6}{8}\right)^2$ or $\left(\frac{8}{6}\right)^2$ oe
				or $\frac{32 \times 2}{8} \times \frac{6}{8}$ or $\frac{32 \times 2}{10} \times \frac{6}{8}$
19	(a)	(p+t)(y+2x) final answer	2	B1 for $y(p+t)+2x(p+t)$ or $p(y+2x)+t(y+2x)$
	(b)	7(h+k)(h+k-3) final answer	2	B1 for $7((h+k)^2 - 3(h+k))$ or $(h+k)(7(h+k)-21)$
20		45π	3	M1 for $\frac{1}{3} \times \pi \times 3^2 \times 9$ (27π) M1 for $\frac{1}{2} \times \frac{4}{3} \times \pi \times 3^3$ (18π) or SC2 for final answer 63π or 141.3
21	(a)	2.3×10^{12}	2	M1 for 20×10^{11} or 0.3×10^{12} seen or correct answer not in scientific notation e.g. 23×10^{11} or 23000000000000
	(b)	$a + 100b \text{ or } a + b \times 10^2$	1	
22		F C A E	1, 1 1, 1	
23	(a)	-13	1	
	(b)	-3x - 1 or $5 - 3(x + 2)$	1	
	(c)	9x - 10	2	M1 for $5 - 3(5 - 3x)$
	(d)	$\frac{5-x}{3}$ final answer oe	2	M1 for correct first step e.g. $y+3x=5$ or $\frac{y}{3}=\frac{5}{3}-x$ or $y-5=-3x$ or better or for interchanging x and y e.g. $x=5-3y$, this does not need to be the first step